Compressed Sensing Dynamic MRI Reconstruction Using GPU-accelerated 3D Convolutional Sparse Coding

نویسندگان

  • Tran Minh Quan
  • Won-Ki Jeong
چکیده

In this paper, we introduce a fast alternating method for reconstructing highly undersampled dynamic MRI data using 3D convolutional sparse coding. The proposed solution leverages Fourier Convolution Theorem to accelerate the process of learning a set of 3D filters and iteratively refine the MRI reconstruction based on the sparse codes found subsequently. In contrast to conventional CS methods which exploit the sparsity by applying universal transforms such as wavelet and total variation, our approach extracts and adapts the temporal information directly from the MRI data using compact shift-invariant 3D filters. We provide a highly parallel algorithm with GPU support for efficient computation, and therefore, the reconstruction outperforms CPU implementation of the state-of-the art dictionary learning-based approaches by up to two orders of magnitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved k-t FOCUSS using a sparse Bayesian learning

Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...

متن کامل

Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse codin...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Deep convolutional neural networks for accelerated dynamic magnetic resonance imaging

Dynamic magnetic resonance imaging (MRI) scans can be accelerated by utilizing compressed sensing (CS) reconstruction methods that allow for diagnostic quality images to be generated from undersampled data. Unfortunately, CS reconstruction is time-consuming, requiring hours between a dynamic MRI scan and image availability for diagnosis. In this work, we train a convolutional neural network (CN...

متن کامل

Clinical evaluation of the respiratory mechanics using accelerated 3D dynamic free breathing MRI reconstruction

Three-dimensional dynamic MRI (3D-DMRI) is a promising method to analyze respiratory mechanics. However, current 3D DMRI implementations o er limited temporal, spatial resolution and volume coverage. In this work we demonstrate the feasibility of three compressed sensing reconstruction methods along with view-sharing method with clinical evaluation on 8 healthy subjects by expert radiologists. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016